

Book design, layout and illustrations by

Katie Alley

Ronnie Roberts

Grey Hinkle

Val

Noah Scheer

Cover illustration and design by Korie Fox

© 2022 Suzy Koontz. All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission from the author, except for the inclusion of brief quotations in a review.

> Multiplication and Division in the Real World Book B

Printed in the United States of America First Edition 2022 ISBN 978-1-7373728-9-9

For more information about this book and other math materials, visit <u>mathandmovement.com</u>

Introduction

Welcome to *Multiplication and Division in the Real World*! This book connects the concepts of multiplication and division to everyday problems that students encounter in their daily lives. It also explains how to solve multiplication and division problems using a variety of strategies.

This book includes practice for the multiples of 7, 8, 9, 10, 11, and 12. For each multiple, students are introduced to skip counting, repeated addition, repeated subtraction, traditional multiplication questions, multiplication by a factor of 10, fact families, traditional division questions, mixed multiplication and division questions, real-world multiplication questions.

When we introduce mixed multiplication and division (real-world) questions, we do so in two parts. In the first set of questions, we ask the student to identify which operation (multiplication or division) needs to be employed to solve the problem and then to circle either multiply or divide. In the second set of questions, we ask the student to identify the operation and then solve the problem.

This book is organized in this manner because when students are first introduced to multiplication and division real-world problems, they tend to be confused about which operation to use.

At the conclusion of the book, there are 42 additional mixed multiplication and division real-world problems that offer a mix of all the multiples.

We hope you enjoy this book!

Sugg Koorts

Suzy Koontz Math & Movement Founder and CEO

Multiplication Table	1
Fun with Arrays	2
Fun with Area	5
Double, Double	13
Welcome to 7s	17
Skip Counting Fun for 7s	18
Fun with Multiplication by 7s	
- Repeated Addition	19
Fun with Division by 7s	
- Repeated Subtration	20
Using Math and Movement Mats to	
Solve Multiplication Problems - 7s	21
Multiplication by 7s	22
Multiplying 7 by Multiples of 10 and 100	37
Using Math and Movement to	
Solve Division Problems by 7s	38
Fun with Division - 7s	39
Fact Families - 7s	43
What Number Makes these Equations True? - 7s	45
Mixed Multiplication and Division by 7s	46
Real World Multiplication Problems by 7s	48
Real World Division Problems by 7s	52
Multiplication and Division Operations - 7s	56
Real World Multiplication and	
Division Problems - 7s	62

Copyright 2022

Welcome to 8s	67
Skip Counting Fun for 8s	68
Fun with Multiplication by 8s - Repeated Addition	70
Fun with Division by 8s - Repeated Subtraction	71
Using Math and Movement Mats to Solve Multiplication Problems - 8s	72
Multiplication by 8s	73
Multiplying 8 by Multiples of 10 and 100	87
Using Math and Movement to Solve Division Problems - 8s	88
Fun with Division - 8s	89
Fact Families - 8s	93
What Number Makes these Equations True? - 8s	95
Mixed Multiplication and Division by 8s	96
Real World Multiplication Problems by 8s	98
Real World Division Problems by 8s	102
Multiplication and Division Operations - 8s	106
Real World Multiplication and Division Problems by 8s	112

Personal Progress Report Completion Stickers

Welcome to 9s	117
Skip Counting Fun for 9s	118
Fun with Multiplication by 9s	
-Repeated Addition	120
Fun with Division by 9s	
- Repeated Subtration	121
Using Math and Movement Mats to	
Solve Multiplication Problems - 9s	122
Multiplication by 9s	123
Multiplying 9 by Multiples of 10 and 100	137
Using Math and Movement to	
Solve Division Problems - 9s	138
Fun with Division - 9s	139
Fact Families - 9s	143
What Number Makes these Equations True? - 9s	145
Mixed Multiplication and Division by 9s	146
Real World Multiplication Problems by 9s	148
Real World Division Problems by 9s	152
Multiplication and Division Operations - 9s	156
Real World Multiplication and	
Division Problems by 9s	162

Personal Progress Report Completion Stickers

Welcome to 10s	167
Skip Counting Fun for 10s	168
Fun with Multiplication by 10s	
- Repeated Addition	170
Fun with Division by 10s	
- Repeated Subtraction	171
Multiplication by 10s	172
Multiplying 10 by Multiples of 10 and 100	176
Fun with Division - 10s	177
Fact Families - 10s	181
What Number Makes these Equations True? - 10s	183
Mixed Multiplication and Division by 10s	184
Real World Multiplication Problems by 10s	186
Real World Division Problems by 10s	190
Multiplication and Division Operations - 10s	194
Real World Multiplication and Division	
Problems by 10s	200

Welcome to 11s	205
Skip Counting Fun for 11s	206
Fun with Multiplication by 11s - Repeated Addition	208
Fun with Division by 11s	
- Repeated Subtraction	209
Multiplication by 11s	210
Multiplying 11 by Multiples of 10 and 100	214
Fun with Division - 11s	215
Fact Families - 11s	219
What Number Makes these Equations True? - 11s	221
Mixed Multiplication and Division by 11s	222
Real World Multiplication Problems by 11s	224
Real World Division Problems by 11s	228
Multiplication and Division Operations - 11s	232
Real World Multiplication and Division	
Problems by 11s	238

Welcome to 12s	243
Skip Counting Fun for 12s	244
Fun with Multiplication by 12s	
- Repeated Addition	246
Fun with Division by 12s	
- Repeated Subtraction	247
Using Math and Movement Mats to	
Solve Multiplication Problems - 12s	248
Multiplication by 12s	249
Multiplying 12 by Multiples of 10 and 100	263
Using Math and Movement to	
Solve Division Problems - 12s	264
Fun with Division - 12s	265
Fact Families - 12s	269
What Number Makes these Equations True? - 12s	271
Mixed Multiplication and Division by 12s	272
Real World Multiplication Problems by 12s	274
Real World Division Problems by 12s	278
Multiplication and Division Operations - 12s	282
Real World Multiplication and Division	
Problems by 12s	288

Personal Progress Report Completion Stickers

Two-Step Real World Multiplication and	
Division Problems	292
Pre-tests	313
Post-tests	319
Compare Your Scores	325
Real World Problems Answer Key	327
Certificate of Completion	

Personal Progress Report Completion Stickers

Moltiplication Table

	0	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0	2	4	6	8	10	12	14	16	18	20	22	24
3	0	3	6	9	12	15	18	21	24	27	30	33	36
4	0	4	8	12	16	20	24	28	32	36	40	44	48
5	0	5	10	15	20	25	30	35	40	45	50	55	60
6	0	6	12	18	24	30	36	42	48	54	60	66	72
7	0	7	14	21	28	35	42	49	56	63	70	77	84
8	0	8	16	24	32	40	48	56	64	72	80	88	96
9	0	9	18	27	36	45	54	63	72	81	90	99	108
10	0	10	20	30	40	50	60	70	80	90	100	110	120
11	0	11	22	33	44	55	66	77	88	99	110	121	132
12	0	12	24	36	48	60	72	84	96	108	120	132	144

Fun with Arrays

An array has rows and columns. It can be used to represent multiplication and division. Rows represent the number of groups. Columns represent the number in each group.

Here is an array. This array has 3 rows and 7 columns.

In the array below, how many rows are there?

How many columns does the array below have?

__ columns

Copyright 2022

Multiplication Word Problems with Arrays

Here are two examples of how arrays can be used to model and solve multiplication word problems.

1. Maxwell has 3 buckets. There are 8 tadpoles in each bucket. How many tadpoles does he have total?

Look at the array below. In this problem, the **bucket** is the **group**. The array has 3 rows because there are 3 buckets. There are 8 columns because each bucket has 8 tadpoles.

This array is a model for $3 \times 8 = 24$. Maxwell has 24 tadpoles in all.

2. Abby has 4 vines of grapes. Each vine has 10 grapes. How many grapes does Abby have in total?

Look at the array below. In this problem, the **vines of grapes** is the **group**. The array has 4 rows because there are 4 vines. The array has 10 columns because there are 10 grapes in each group.

This array is a model for $4 \times 10 = 40$. Abby has 40 grapes in total.

Division Word Problems with Arrays

Here are two examples of how arrays can be used to model and solve division word problems.

1. Kinsley has 27 crayons. She puts the crayons into 3 pouches. How many crayons will be in each pouch?

Look at the array below. In this problem, the **pouch** is the **group**. The array has 3 rows because there are 3 pouches.

To draw a picture of the array, first draw 3 rows of pouches. Then, keep drawing 3 rows of pouches at a time until you have

drawn 27 boxes. This array is a model for $27 \div 3 - 9$ There will be 9 crayons

This array is a model for $27 \div 3 = 9$. There will be 9 crayons in each pouch.

2. Spencer has 32 toys. He puts the toys into 4 bins. How many toys will be in each bin?

Look at the array below. In this problem, the **bin** is the **group**. The array has 4 rows because there are 4 bins.

To draw a picture of the array, first draw 4 rows of bins. Then, keep drawing 4 rows of toys at a time until you have drawn 32 toys.

000000

This array is a model for $32 \div 4 = 8$. There will be 8 toys in each bin.

Fun with Area

When you know multiplication, area problems are easy to solve! The area of a shape is the size of the space inside the shape. To find the area, count the square units inside of the shape.

Try these problems!

What is the area of the shape below? Count the squares to find the answer.

Area = _____ square units

What is the area of the next shape below? Count the squares to find the answer.

Area = ______ square units

Using Multiplication to Find Area

Let's try using multiplication to find the area of a shape instead of counting. Study the equation for area below.

Area = Length x Width

The length of the shape below is 8 units. The width is 5 units.

Area = Length x Width

Area = 8 units x 5 units = 40 square units

Important note: you will get the same answer if you multiply width x length. The **commutative property of multiplication** tells us that length x width = width x length.

Area = Length x Width Area = Width x Length Look at the shape below. Follow the steps to solve for area.

Step 1: What is the length? u
Step 2: What is the width? un
Step 3: What is the area of this shap
X=
Area = square units
math & movement Copyright

More Practice Using Multiplication to Find Area

Directions: Find the area of each shape using multiplication.

1.	2.				
What is the length? units	What is the length? units				
What is the width? units	What is the width? units				
What is the area?	What is the area?				
x=	x=				
Area = square units	Area = square units				
What is the length? units	What is the length? units				
What is the width? units	What is the width? units				
What is the area?	What is the area?				
x=	x=				
Area = square units	Area = square units				
Copyright 2022 math & movement 7					

Finding the Area of Shapes with Different Units

Some shapes will use different units of measurement. You can still find the area by multiplying length x width.

8

Copyright 2022

More Practice Finding the Area of Different Shapes

1.	7 cm	What are the units?
7 cm	7 cm	What is the length? (unit)
	7 cm	What is the width? (unit)
cm	= centimeters	What is the area? square(unit)
2.		
	8 ft	What are the units?
8 ft	8 ft	What is the length? (unit)
	8 ft	What is the width? (unit)
	ft = feet	What is the area? square(unit)
3.		
		What are the units?
_	12 in	
		What is the length? (unit)
4 in		4 in What is the width?
	12 in	(UNIL)
	in = inches	(unit)

Real World Area Problems

Example: Justin has a rectangular poster in his room, as shown below. What is the area, in square feet, of Justin's poster?

1. Zoey has a rectangular poster in her room, as shown below. What is the area, in square inches, of Zoey's poster?

Real World Area Problems

2. Vanessa t has a rectangular poster in her room, as shown below. What is the area, in square inches, of Vanessa's poster?

3. Ian is helping his father build a garden. They draw a picture of the garden, as shown below. What is the area, in square feet, of lan's garden?

Real World Area Problems

4. Tucker plans to retile the cafeteria floor. He draws a picture of their cafeteria floor, as shown below. What is the area, in square yards, of Tucker's cafeteria floor?

What are the units? _

What is the length?

(unit)

What is the width?

(unit)

What is the area?

__ square ___

(unit)

Have you ever wished your students would slow down and really think through their word problems? Do your students struggle to determine whether to use multiplication or division in a word problem? Do your students need to enhance their multiplication and division fluency?

Multiplication and Division in the Real World connects multiplication and division concepts to relatable word problems that students could encounter daily.

Book B includes multiplication and division fluency practice for multiples seven through twelve and 220 practical, relevant, and relatable word problems. Students will develop multiplication and division strategies like skip counting, repeated addition, and fact families. This approach strengthens students' math fact fluency and enhances their problem-solving ability.

Incorporate this book into your math lessons and see students' math confidence soar! Increased math confidence helps students process each word problem in its entirety - students will slow down and focus on choosing the correct strategy to solve the problem.

Use *Multiplication and Division in the Real World* in classrooms, homework support, intervention, afterschool programs, Saturday academies, or Summer Learning programs.

Suzy Koontz is an educational consultant, an actuary, a former math teacher, and author. She is a frequent speaker on the benefits of combining math practice with movement. Suzy's mission is for all students to be on grade level in math and reading. As a national presenter for schools, conferences and PTA/O, Suzy shares how movement-based learning can assist in accomplishing this goal. She lives in Ithaca, New York, with her husband and four daughters.

Learn more about Math & Movement at www.mathandmovement.com

